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Abstract
The Fredholm integral equation approach (Hillion P 2001 J. Phys. A: Math.
Gen. 34 4687) of dealing with the scattering of scalar harmonic waves on plane
obstacles is extended to two classes of scalar pulses with finite duration or
decreasing strongly for |t | ⇒ ∞. The consistency of this formalism is checked
for digital signals and focus wave modes impinging on a perfectly reflecting
smooth plane. To illustrate this approach, two different topics are investigated:
scattering of digital signals on an impedance plane and their reflection on a
time-reversal mirror.

PACS numbers: 4120J, 0230N, 0230R, 0230U

1. Introduction

In a previous work [1], a Fredholm integral equation was developed to analyse the scattering
by obstacles, mainly planes, of scalar harmonic waves; solutions of the Helmholtz equation
and the differences from the conventional scattering integral equations were emphasized.

This approach is generalized here to the scattering by obstacles of scalar pulses, solutions
of the wave equation, a problem that raised a little interest in the past [2–4] when technology
generated pulses considered as packets of harmonic plane waves. However, the situation is
now changing with the blossoming of digital signals, which leads us to consider two classes
of scalar pulses: the S-pulses of rapid descent such as for |t | ⇒ ∞, they and all their partial
derivatives decrease strongly to zero at a given point in space and the D-pulses, which are zero
outside some finite interval of time. The corresponding Fredholm integral equations require
two different types of Green function for S- and D-pulses.

We present in section 2 the time-dependent Fredholm integral equations for scattering
of pulses on a perfectly reflecting smooth plane, then the differences with the conventional
approach are stressed and the consistency of this approach is checked on two simple examples.
To illustrate this approach, two different topics are discussed in section 3: scattering of D-
pulses on an impedance plane and reflection on a time-reversal mirror. The reasons to be
interested in pulse scattering on planes are given in section 4.
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2. Time-dependent Fredholm integral equations

2.1. General theory

We use the same notations as in [1]: x(xy, z) and x′(x ′, y ′, z′) denote respectively the action
and point sources in the Green functions while the surface S is written 	,	′, for the action
and source points respectively and we consider scalar pulses depending arbitrarily on time and
impinging on a perfectly reflecting smooth plane located at z = 0. We still assume that the
total field

ψ(x, t) = ψi(x, t) + ψs(x, t) (1)

in which ψi, ψs are the incident and scattered fields and the Green function G(x, t; x′, t ′)
satisfies the Dirichlet and Neumann boundary conditions (soft and hard in acoustics)

[ψ(x, t)]z=0 = 0 [GD(x, t; x′, t ′)]z=0 = 0 (2a)

[∂zψ(x, t)]z=0 = 0 [∂zGN(x, t; x′, t ′)]z=0 = 0 (2b)

with the Green functions GDGN , deduced from the free-space Green function G(x, t; x′, t ′)
to be discussed below using the method of images {x = (x, y, z), ξ = (x, y,−z)}

GD(x, t; x′, t ′) = G(x, t; x′, t ′)−G(ξ, t; x′, t ′)
GN(x, t; x′, t ′) = G(x, t; x′, t ′) +G(ξ, t; x′, t ′).

(3)

Moreover, the Fredholm integral equations take the form

ψ(x, t) =
∫ ∞

−∞
dt ′

∫ ∞

−∞
dx ′

∫ ∞

−∞
dy ′ [GD(x, t; x′, t ′)∂z′ψ(x′, t ′)]z′=0 (4a)

ψ(x, t) = −
∫ ∞

−∞
dt ′

∫ ∞

−∞
dx ′

∫ ∞

−∞
dy ′ [ψ(x′, t ′)∂z′GN(x, t; x′, t ′)]z′=0. (4b)

Now let G(x,x′; k) denote the free-space Green function of the Helmholtz equation
(equation (8a) in [1])

G(x,x′; k) = (i/8π2)

∫ ∫ ∞

−∞
dß dγ k−1

z exp[iß(x − x ′) + iγ (y − y ′) + ikz|z− z′|]
k2
z = k2 − ß2 − γ 2

(5)

then, for S-pulses, G(x, t; x′, t ′) is the inverse Fourier transform of G(x,x′; k)

G(x, t; x′, t ′) = (1/2π)
∫ ∞

−∞
exp[ik(ct − ct ′)]G(x,x′; k) dk (6)

while for D-pulsesG(x, t; x′, t ′) is the inverse Laplace transform ofG(x,x′; k) with respect
to the variable s = ik

G(x, t; x′, t ′) = (1/2π i)
∫

Br
exp[s(ct − ct ′)]G(x,x′; s) ds (7)

in which the Bromwich contour Br is made up of a line L parallel to the imaginary axis of the
complex s-plane with all the singularities of the integrand on its left.

Let us now make clear the differences between the present approach and the conventional
one, in which to avoid confusion we denote by g the Green functions. The total field ψ still
satisfies the boundary conditions (2a) and (2b) while the corresponding boundary conditions
for gD,N are now given on the 	′-plane z′ = 0 and no longer on 	

[gD(x, t,x
′, t ′)]	′ = 0 [∂zgN(x, t; x′, t ′)]	′ = 0 (8)
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supplying the two integral equations

ψ(x, t) = ψi(x, t) +
∫ ∫ ∫ ∞

−∞
dt ′ dx ′ dy ′ [gN(x, t; x′, t ′)∂z′ψs(x

′, t ′)]z′=0 (9)

ψ(x, t) = ψi(x, t)−
∫ ∫ ∫ ∞

−∞
dt ′ dx ′ dy ′ [ψs(x

′, t ′)∂z′gD(x, t; x′, t ′)]z′=0 (10)

in which gD,N are obtained from the free-space Green function g, still by the method of images
but now taken with respect to the 	′-plane z′ = 0, so that with ξ ′(x ′, y ′; −z′) we obtain

gD(x, t,x
′, t ′) = g(x, t; x′, t ′)− g(x, t; ξ ′, t ′)

gD(x, t; x′, t ′) = g(x, t; x′, t ′) + g(x, t; ξ ′, t ′)
(11)

where the Green function g [2, 4] in which δ is the Dirac distribution is

g(x, t; x′, t ′) = (1/4π)δ[c−1|x − x′| − (t − t ′)]/|x − x′|. (12)

It is assumed in (9) and (10) thatψi(x) or ∂zψi(x) is known on the plane z = 0 so that from the
boundary conditions (2a) and (2b) the expressions of ψs(x

′) to be introduced in the integrand
of (9) and (10) are also known. So, strictly speaking, as stressed in [1], equations (10a)
and (10b) are not integral equations but they are solutions of the wave equation in an integral
form.

2.2. Consistency of Fredhom integral equations

To check the consistency of Fredholm integral equations we investigate the reflection of S-
and D-pulses on a plane mirror, taking a focus wave mode [5,6] as a prototype of S-pulse, and
for the sake of simplicity we consider a two-dimensional problem, assuming that the fields do
not depend on y.

A two-dimensional scalar focus wave mode impinging on the plane z = 0 from the region
z < 0 has the form [7, 8] with u = (x, z)

ψi(u, t) = h−1/2(u, t) exp[iωc−1(ct − Z)− ωX2c−1h−1(u, t)] (13)

h(u, t) = a − i(ct + Z) Z = x sin θ + z cos θ X = x cos θ − z sin θ (13a)

where the parameter a is an arbitrary positive length. So ψi is a S-pulse and it is a simple
exercise to check that ψi is solution of the two-dimensional wave equation. We assume that
the total field satisfies the boundary condition (2b).

An interesting question is whether reflection at a perfectly conducting plane preserves
the structure of focus wave modes so that reflected waves are obtained in agreement with the
Descartes–Snell law by changing θ into π − θ (or equivalently z into −z) in equations (13)
and (13a). If so, ψ = ψi +ψr is solution of the integral equation (4b) that we now write since
we are working in a two-dimensional space

ψ(u, t) = −
∫ ∞

−∞
dt ′

∫ ∞

−∞
dx ′ [ψ(u′, t ′)∂z′GN(u, t,u′, t ′)]z′=0 z � 0 (14)

while substituting (5) into (6) gives with k2
z = k2 − ß2

4π2G(u, t; u′, t ′) = ic
∫ ∞

−∞
dt ′

∫ ∞

−∞
dß k−1

z exp[ik(ct − ct ′) + iß(x − x ′) + ikz|z− z′|] (15)

so that substituting (15) into (3) and using the relation (equation (23) in [1])

2π [∂z′GN(u,u
′; k)]z′=0 = −

∫ ∞

−∞
dß exp[iß(x − x ′)] cos(kzz) (15a)
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we obtain

4π2[∂z′GN(u, t; u′, t ′)]z′=0 = −c
∫ ∞

−∞
dk

∫ ∞

−∞
dß exp[ik(ct − ct ′) + iß(x − x ′)] cos(kzz).

(16)

Now according to (13) and (13a) we have ψi(u
′, t ′)]z′=0 = [ψr(u

′, t ′)]z′=0 and

[ψ(u′, t ′)]z′=0 = 2(a − ir ′)−1/2 exp[iω(t ′ − x ′ sin θ/c)− ωc−1x ′2 cos2 θ(a − ir ′)−1] (17)

r ′ = ct ′ + x ′ sin θ. (17a)

Substituting (16) and (17) into (14) gives

2π2ψ(u, t) =
∫ ∫ ∞

−∞
dk dß exp(ikct + ißx) cos(kzz)F (ß, k) (18)

F(ß, k) =
∫ ∫ ∞

−∞
dt ′ dx ′(a − ir ′)−1/2

× exp[ict ′(ω/c − k)− ix ′(ß + ω sin θ/c)− c−1ωx ′2 cos θ/(a − ir ′)] (19)

and one checks in appendix A that

ψ(u, t) = ψi(u, t) + ψr(u, t) (20)

reflection at a mirror preserves the structure of focus wave modes, making the Descartes–Snell
law valid.

Still assuming that the total field satisfies the boundary condition (2b) we now consider a
scalar D-pulse incident from the region z < 0 of space normally on the plane S

ψi(u, t) = f (t − z/c)[U(t − z/c)− U(t − τ − z/c)] (21)

in which U is the unit step function and f an arbitrary function with partial derivatives while
τ is the duration of the incident pulse. Any point of S is reached by ψi at the same time t = 0
at which a reflected pulse ψr(u, t) is generated, so one is only interested in the total field for
t � 0, and assuming a priori that the Descartes–Snell law is valid we may write

ψi(u, t) = f (t − z/c)U(t)[U(t − z/c)− U(t − τ − z/c)] (22a)

ψr(u, t) = f (t + z/c)U(t)[U(t + z/c)− U(t − τ + z/c)] (22b)

and if we are correct ψi + ψr should be the solution of the integral equation (14) in which the
Green function GN is now defined by the relations (3), (5) and (7) so that

8iπ2GN(u, t; u′, t ′) = c

∫
Br

ds
∫ ∞

−∞
dß s−1

z '(ß, s){exp(−sz|z− z′|) + exp(−sz|z + z′|)} (23)

'(ß, s) = exp[s(ct − ct ′) + iß(x − x ′)] sz = (s2 + ß2)1/2. (23a)

Then, the derivative of GN is

8iπ2∂z′GN(u, t; u′, t ′) = c

∫
Br

ds
∫ ∞

−∞
dß'(ß, s)

×{exp(−sz|z− z′|)∂z′ |z− z′| + exp(−sz|z + z′|)∂z′ |z + z′|} (24)

and using the relations (equation (22) in [1])

|z− z′]z′=0 = −z [∂z′ |z− z′|]z′=0 = 1 z < 0
|z + z′]z′=0 = z [∂z′ |z + z′|]z′=0 = 1 z > 0

(25)
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we obtain

4iπ2[∂z′GN(u, t; u′, t ′)]z′=0 = −c
∫

Br
ds

∫ ∞

−∞
dß'(ß, s) cosh(szz) (26)

while according to (22a) and (22b), discarding the useless repetition of the step functionU(t ′),

[ψ(u′, t ′)]z′=0 = [ψi(u
′, t ′) + ψr(u

′, t ′)]z′=0 = 2f (t ′)[U(t ′)− U(t ′ − τ)]. (27)

Substituting (26) into (16) and taking into account (23a) gives

ψ(u, t) = (1/4iπ2)

∫
Br

ds exp(sct)
∫ ∞

−∞
dß exp(ißx) cosh(szz)F (ß, s) (28)

F(ß, s) =
∫ ∞

−∞
dx ′ exp(−ißx ′)

∫ ∞

−∞
c dt ′ exp(−sct ′)[ψ(u′, t ′)]z′=0 (28a)

and taking into account (27)

F(ß, s) =
∫ ∞

−∞
dx ′ exp(−ißx ′)

∫ τ

0
dt ′f (t ′) exp(−sct ′)

= 4πδ(ß)
∫ τ

0
dt ′f (t ′) exp(−sct ′). (28b)

Substituting (28b) into (28) gives

ψ(u, t) = (c/iπ)
∫ τ

0
dt ′f (t ′)

∫
Br

ds exp(sct − sct ′)
∫ ∞

−∞
dß δ(β) exp(ißx) cosh(szz)

=
∫ τ

0
dt ′f (t ′)[B+(z, t

′) + B−(z, t ′)] (29)

with

B±(z, t) = (c/2iπ)
∫

Br
ds exp[sct − sc(t ′ ± z/c)] (29a)

and using the well known Laplace transform formula [9]L−1{exp(−as)} = δ(t−a) for a > 0,
we obtain

B±(z, t ′) = δ[t − (t ′ ± z/c)]U(t ′ ± z/c). (30)

Substituting (30) into (29) gives ψ(u, t) = ψi(u, t) + ψr(u, t) since∫ τ

0
dt ′f (t ′)U(t ′ − ±z/c)δ(t − t ′ ± z/c) = f (t ± z/c)U(t)[U(t ± z/c)− U(t − τ ± z/c)]

(31)

the unit step functions in the square bracket arising from the fact that the integral on t ′ is non-
null only if t ± z/c is in the interval (0, τ ).Therefore, the a priori assumption that reflection
brings no distortion to a D-pulse is checked for normal incidence: a result also valid at any
incidence.

2.3. Numerical experiments

A numerical evaluation of the integral equation (14) when the function f (z, t) in the pulse (21)
is f (t − z/c) = exp[−k2(t − z/c)2] and with the Green function (23). In all calculations,
the wavenumber k and the light velocity c are unity. Tables 1 and 2 give the pulse amplitude
ψ(z, t) at the times t = z, z + 2 and z + 4 for z = 0 and 10 and for three values of the pulse
duration τ .

One obtains the same results for z = 20 in agreement with the fact that the amplitude
depends on t − z provided that t − z < τ .
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Table 1. z = 0.

t z z + 2 z + 4

τ = 3 1 18.3 × 10−3 0
τ = 5 1 18.3 × 10−3 1.12 × 10−9

τ = 7 1 1; 3 × 10−3 1.12 × 10−9

Table 2. z = 10.

t z z + 2 z + 4

τ = 3 0.5 9.15 × 10−3 0
τ = 5 0.5 9.15 × 10−3 56.2 × 10−9

τ = 7 0.5 9.15 × 10−3 56.2 × 10−9

3. Application

3.1. D-pulses on an imperfectly reflecting plane

To illustrate this integral equation approach, we consider what happens when the plane S is
not perfectly conducting, assuming that the Neumann boundary conditions (2b) are replaced
by the somewhat more general boundary conditions in which d is a positive constant and sz
the transverse component of the wavevector

[{∂z + szd}ψ(u, t)]z=0 = 0 [{∂z + szd}GZ(u, t; u′, t ′)}]z=0 = 0. (32)

From the definition (3), (5) and (7) of GN we obtain at once

GZ(u, t; u′, t ′) = GN(u, t; u′, t ′) exp(−szd|z− z′|) (33)

since taking into account the relation [∂zGN ]z=0 = 0 a simple calculation gives

[∂zGZ]z=0 = −szd[GZ]z=0[∂z|z− z′|]z=0 (33a)

which implies (33) since [∂z|z− z′|]z=0 = 1 for z′ < 0.
Then, for the boundary conditions (32) the integral equation (14) becomes withGZ instead

of GN

ψ(u, t) = −
∫ ∞

−∞
dt ′

∫ ∞

−∞
dx ′ [ψ(u′, t ′)∂z′GZ(u, t; u′, t ′)]z′=0 = z � 0. (34)

However, now there is no reason why the reflected pulse should be supplied by the Descartes–
Snell law, so we substitute ψi +ψr for ψ in (34) to obtain the integral equation satisfied by the
reflected pulse and we obtain

ψr(u, t) + φr(u, t) = −[ψi(u, t) + φi(u, t)] z � 0 (35)

in which φi,r are the integrals

φi,r(u, t) =
∫ ∞

−∞
dt ′

∫ ∞

−∞
dx ′ [ψi,r(u

′, t ′)∂z′GZ(u, t; u′, t ′)]z′=0. (35a)

We suppose that the incident field is the pulse (21) with normal incidence so that we are
still interested in the total field for t � 0 when ψi(u, t) has the expression (22a) and, from
now on, we denote by ψ(0)r (u, t) the expression (22b) of the pulse reflected according to the
Descartes–Snell law.

Our first task is to compute φi(u, t) and we obtain in appendix B

φi(u, t) = −2−1(1 + d)[ψi(u, td) + ψ(0)r (u, td)] td = t − d|z|/c (36)
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in which ψi and ψ(0)r are the pulses (22a) and (22b) at the time td . The same calculation made
with ψ(0)r in the integrand of (35a) would supply φ(0)r deduced from φi by changing z into −z
so that

φ(0)r (u, t) = φi(u, t). (37)

It follows from (36) and (37) that for d = 0 we have φi = φ
(0)
r = −2−1(ψi + ψ(0)r ) so that

equation (35) reduces to the simple relation ψi − 2−1(ψi + ψ(0)r ) = −[ψi − 2−1(ψi + ψ(0)r )].
We now look for the solution of the integral equation (35) withψi and φi on the right-hand

side given respectively by (23a) and (36). A simple approximation of the solution, the first
term in fact of a Rayleigh–Gans approximation discussed in [1], is obtained by substituting
φ
(0)
r for φr in (35). Denoting by ψ(1)r this approximation, we obtain

ψ(1)r (u, t) = −[ψi(u, t) + φi(u, t) + φ(0)r (u, t)] z � 0 (38)

or according to (36) and (37)

ψ(1)r (u, t) = (1 + d)[ψi(u, td) + ψ(0)r (u, td)] − ψi(u, t) z � 0 (38a)

that we write

ψ(1)(u, t) = (1 + d)ψ(0)(u, td) z � 0 (39)

in which ψ(0) and ψ(1) are the total field when the reflected field satisfies respectively the
Descartes–Snell law and the integral equation (35). So, at this level of approximation,ψ(1) has
at time t the structure of ψ(0) at time td with an amplitude multiplied by 1 + d. Therefore, the
boundary conditions (32) give rise through the Green functionGZ , that acts as a delay line, to
a distorted reflected pulse in such a way that the total field appears as retarded. However, the
relation (43) is valid for the first-order approximation (38), and to higher-order approximations
distortion could be different. One would proceed similarly for a D-pulse impinging with the
incidence 0 � θ < π/2, the time td being now defined by the relation td = t − d cos θ |z|/c.

It is not claimed that the boundary conditions (32) correspond to a material of practical
use. They were chosen to make calculations tractable to illustrate qualitatively the kind of
processes that happen on a imperfectly reflecting surface. More realistic boundary conditions
are supplied by an impedance plane as discussed in [1] with N now defined as

N = dε[s2
z + (ε − 1)s2] (40)

but the presence of s2
z in (40) instead of sz in (32) makes the calculation of the inverse Laplace

transform required by the integral equation (34) difficult.

3.2. Numerical experiments

Using the same pulse as in section 2.3, calculations are now performed with the Green
function (33) discussed in appendix B. The pulse amplitude ψ(z, t) appears in tables 3 and
4 for a pulse duration τ = 3, for d = 0.05, 0.1, 0.5 and the same values of z and t as in the
previous tables.

The comparison with the results of section 2.3 shows a reduction in the pulse amplitude.

Table 3. z = 0, τ = 3.

t z z + 2 z + 4

d = 0.05 0.951 17.4 × 10−3 0
d = 0.01 0.904 16.5 × 10−3 0
d = 0.50 0.606 11.6 × 10−3 0
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Table 4. z = 10, τ = 3.

t z z + 2 z + 4

d = 0.05 0.475 8.71 × 10−3 0
d = 0.01 0.452 8.27 × 10−3 0
d = 0.50 0.303 5.55 × 10−3 0

3.3. D-pulse reflection on a time reversal mirror

Time reversal mirrors (TRMs) are used [10,11] to convert an acoustic wavefield from a source
into a wavefield at the source position. The areas of application include medical imagery,
lithotripsy and non-destructive testing and the practical realization of TRM is discussed at
length in [10], but we are interested here in the theoretical aspect of this problem.

Assuming that (x, z) is the plane of incidence and the total field null on the mirror so that
we may use the Fredholm equation (28), we consider a rectangular pulse ψi of duration t0,
launched at t = 0 by a source located at x = 0, z = z0, which impinges normally on a mirror
in the z = 0 plane. Such a pulse has the form in which U is the unit step function

ψi(z, t) = U(ct − z0 + z)− U(ct − ct0 − z0 + z) (41)

which reduces on the 	′-plane z′ = 0 to

ψi(0, t
′) = U(ct ′ − z0)− U(ct ′ − ct0 − z0). (42)

On a conventional mirror ψre(0, t ′) = ψi(0, t ′) and the total field is ψ(0, t ′) = 2ψi(0, t ′), but
on a TRM, starring all the quantities pertaining to TRM reflections, one has

ψ∗
re(0, t

′) = T ψi(0, t
′) = U(ct ′ + z0)− U(ct ′ − ct0 + z0) (43)

in which T is the time-inversion operator; note that according to the CPT theorem [12], where
P,C are the parity and charge conjugation operators, one has T U = PU since U is real.

So, assuming ct0 > z0, we may write the total field on the 	′-plane

ψ∗(0, t ′) = ψ(0, t ′)/2 + φ(0, t ′)/2 (44)

in which ψ(0, t ′) = 2ψi(0, t ′) while since U(ct ′ + z0) = 1

φ(0, t ′) = 2[1 − U(ct ′ − ct0 + z0)] (44a)

the relation (44) implies that the total field outside the mirror has the form

ψ∗(z, t) = ψ(z, t)/2 + φ(z, t)/2 (45)

withψ(z, t) = ψi(z, t)+ψre(z, t) the total field supplied by the Descartes–Snell law. Therefore,
one has only to look for the contribution of φ(0, t ′). Now, according to (44a) one has with
b∗ = ct0 − z0 ∫ ∞

−∞
c dt ′ exp(−sct ′)ψ(0, t ′) = 2

∫ b∗

a

exp(−sct ′)c dt ′

= 2s−1{1 − exp[−s(ct0 − z0)]}. (46)

With (46), the integral (28a) becomes

Fφ(ß, s) = 4πδ(ß)s−1{1 − exp[−s(ct0 − z0)]} (47)

and we obtain from (28) the contribution φ(z, t) to the total pulse

φ(z, t) = L−1{'−(z, s)} + L−1{'+(z, s)} (48)
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'±(z, s) = s−1 exp(±sz){1 − exp[−s(ct0 − z0)]}. (48a)

Using L−1{1/s} = U(t) and the well known property of the Laplace transform for a > 0 [9]

L−1{F(s)} = f (t) ⇒ L−1{exp(−as)F (s)} = f (t − a)U(t − a) (49)

we obtain

φ−(z, t) = L−1{'−(z, s)} = U(ct − z)− U(ct − ct0 + z0 − z). (50)

To obtain L−1{'+(z, s)}, one cannot use (49), which is no longer valid; one has instead [9]

L−1

{
exp(as)

[
F(s)−

∫ a

0
exp(−sτ )f (τ ) dτ

]}
= f (t + a) a > 0. (51)

Note that at the difference of (49) no unit step function is required since t and a are positive
and one obtains easily the intuitively evident result

L−1{exp(as)} = δ(t + a) a > 0 (52)

so that

φ+(z, t) = L−1{'+(z, s)} = 1 − U(ct − ct0 + z0 + z). (53)

Substituting (50) and (53) into (45) gives the total pulse due to the TRM reflection of a
rectangular pulse

ψ∗(z, t) = [ψi(z, t) + ψre(z, t)]/2 + [φ − (z, t) + φ+(z, t)]/2. (54)

Since U(ct + z0 + z) = 1 one has φ+(z, t) = CPψre(z, t): the TRM reflected field is CP
invariant.

All these results hold if ct0 > z0, but according to (43)ψ∗
re(0, t

′) = 0 for ct0 < z0 because
U(ct ′ + z0) = U(ct ′ − ct0 + z0) = 1 so there is no TRM reflection in this case; in particular a
TRM does not reflect a Dirac pulse.

A careful analysis of this result to be discussed elsewhere, where the behaviour of different
types of pulse is analysed, shows that a TRM-reflected pulse exists in the region 0 � z � z0 as
soon as the incident field reaches the mirror until the return time to the source, which seems to
be in agreement with the experimental observations, while beyond this time the contribution
is that of a conventional reflected pulse divided by two. When ct0 > z0 one has similar results
except that the contribution of the TRM-reflected pulse starts at t = 0. One may understand
this result by noting that the time inversion transforms the tail of the acoustic pulse into a
precursor, so the larger t0 is with respect to the return time t1 to the source, the quicker is the
reaction of the mirror.

4. Discussion

Why are we interested in scattering of pulses on planes? There are at least two reasons.
First, digital technology, launching signals with finite duration and energy, and blossoming
in communications, generates signals, compelled to satisfy causality, that neither propagate
nor interact as harmonic wavepackets used today to describe most of the physical processes
in classical optics and in radiowave propagation. Furthermore, modern technology could
also generate, at least with a good approximation, some of the nondiffractive solutions of the
wave equation recently demonstrated, such as focus wave modes [5–8], Bessel [13], Bessel–
Gauss [14] and X pulses [15], among which the last two are serious candidates [16, 17] to be
created. Already, the present-day laser technology can produce extremely short and intense
pulses [18] containing only a few field oscillations, even only one, whose scattering properties
differ substantially from those of quasimonochromatic, many-cycle pulses [19].
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On the other hand, there now exist new kinds of material, specially chiral, with electric and
magnetic properties different from those of dielectrics and of good conducting metals, most
often used in mathematical models of diffracting surfaces. So, foreseeing the interactions of
these new signals and materials becomes important, which requires us to solve boundary value
problems of wave and Maxwell equations. When data are not supplied on simple surfaces, this
difficult task is investigated with the help of models based on ansatze [20] suggested by the
solution of simpler idealized problems; the present integral equation approach may be used as
a tool for obtaining such ansatze.

It is noticed in [1] that the Fredholm integral equation gives a new approach to diffraction
of harmonic waves by plane apertures [21]; work is in progress to generalize this approach to
scalar pulses as is its extension to electromagnetic fields. The discussion of the validity of the
Descartes–Snell law for pulse reflection on an arbitrary surface is postponed to a later work.

Appendix A

Introducing the variables

λ = k − ω/c µ = ß + ω sin θ/c s ′ = x ′µ/λ (A.1)

the integral (19) becomes

F(λ,µ) = (λ/µc)

∫ ∫ ∞

−∞
dr ′ ds ′ (a − ir ′)−1/2 exp[−iλr ′ − is ′λµ−1(µ− λ sin θ)

−(ωλ2/cµ2) cos2 θs ′2(a − ir ′)−1]

= (λ/µc)

∫ ∞

−∞
dr ′(a − ir ′)−1/2 exp(−iλr ′)f (λ, µ) (A.2)

in which the function f (λ, µ) is

f (λ, µ) =
∫ ∞

−∞
ds ′ exp(−Q2s ′2 − Ps ′)

= exp(P 2/4Q2)

∫ ∞

−∞
ds ′ exp[−Q2(s ′ + P/2Q2)2]

= π1/2/Q exp(P 2/4Q2) (A.3)

with the functions P andQ defined by the relations

P = iλµ−1(µ− λ sin θ) Q = (ωλ2/cµ2) cos2 θ(a − ir ′)−1. (A.4)

Taking into account (A.4), the expression (A.3) becomes

f (λ, µ) = (µ/λ cos θ)[πcω−1(a − ir ′)]1/2 exp[−i(a − ir ′)(µ− λ sin θ)(4ω cos2 θ)−1].

(A.5)

Introducing the function

h(λ, µ) = λ− c(µ− λ sin θ)2(4ω cos2 θ)−1 (A.6)

and substituting (A.5) into (A.2) gives

F(λ,µ) = (π/cw cos2 θ)1/2 exp[−a{λ− h(λ, µ)}]
∫ ∞

−∞
dr ′ exp[−ir ′h(λ, µ)]

= 2π(π/cw cos2 θ)1/2 exp(−aλ)δ{h(λ, µ)}. (A.7)
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δ is the Dirac distribution and we used the relationf (x)δ(x) = f (0)δ(x). Now the integral (18)
becomes in terms of the parameters λ,µ and writing 2 cos(kz) = exp(ikzz) + exp(−ikzz)

ψ(u, t) = ψ+(u, t) + ψ−(u, t) (A.8)

ψ±(u, t) = (−c/π) exp[iωc−1(ct − x sin θ)]'±(u, t) (A.8′)

'±(u, t) =
∫ ∫ ∞

−∞
dλ dµ exp[iλct + iµx ± ikzz)F (λ, µ) (A.9)

with F(λ,µ) given by (A.7) and

kz = [(λ + ω/c)2 − (µ− sin θω/c)2]1/2. (A.10)

Assuming λ > 0, we introduce the variable ρ and the parameter b

ρ = µ− λ sin θ b = c/4ω cos2 θ (A.11)

so that

h(λ, µ) = λ− bρ2 kz = [(λ + ω/c)2 − {ρ + (λ− ω/c) sin θ}2]1/2. (A.12)

Using (A.7), (A.11) and (A.12), the expression (A.9) of '±(u, t) becomes

'±(u, t) = 2π(π/ωc cos2 θ)1/2
∫ ∞

−∞
dρ exp(iρx)

∫ ∞

−∞
dλ

× exp[−aλ + iλct + iλx sin θ ] exp(±ikzz)δ(λ− βr2)

= 2π(π/ωc cos2 θ)1/2
∫ ∞

−∞
dρ exp(iρx)

× exp[−bρ2(a − ict − ix sin θ)] exp(±ikzz). (A.13)

Now, according to (A.12) we obtain for kz in terms of λ = bρ2

kz = [(bρ2 − ω/c)2 cos2 θ − 2ρ sin θ(bρ2 − ω/c) + ρ2 tan g2θ ]1/2

= cos θ(bρ2 − ω/c)− ρ tan gθ. (A.14)

Introducing the variables

e = i(x − z tan gθ) g = a − ict − ix sin θ − iz cos θ (A.15)

and substituting (A.14) into (A.13) gives

'+(u, t) = 2π(π/ωc cos2 θ)1/2 exp(−iωc−1 cos θz)
∫ ∞

−∞
dρ exp(−bgρ2 + eρ)

= 2π(π/wc cos θ)1/2 exp(−iωc−1 cos θz)[(π/bg)1/2 exp(e2/4bg)]. (A.16)

Then, using the expressions (A.11) for b and (A.15) for e, we obtain

'+(u, t) = 4π2c−1g−1/2 exp(−iωc−1z cos θ) exp[−ωc−1g−1(x cos θ − z sin θ)2]. (A.17)

One has just to change z into −z in (A.17) to obtain '−

'−(u, t) = 4π2c−1g−1/2 exp(iωc−1z cos θ) exp[−ωc−1g−1(x cos θ + z sin θ)2]. (A.18)

Substituting (A.17) into (A.8′) gives

ψ+(u, t) = −g−1/2 exp[iωc−1(ct − x sin θ − z cos θ)− ωc−1g−1(x cos θ − z sin θ)2] (A.19)

that is, ψ+ = ψi and similarly ψ− = ψr so that according to (A.8) ψ = ψi + ψr.
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Appendix B

We obtain from (23) and (33) with the expression (23a) of '{ß, s)

8iπ2GZ(u, t; u′, t ′) = c

∫
Br

ds
∫ ∞

−∞
dß s−1

z '(ß, s){exp(−sz|z− z′|)
+ exp(−sz|z + z′|)} exp(−szd||z− z′|) (B.1)

so that according to (24) and (25)

4iπ2[∂z′GZ(u, t; u′, t ′)]z′=0 = −c(1 + d)
∫

Br
ds

∫ ∞

−∞
dß'(ß, s) cosh(szz) exp(−szd|z|)

(B.2)

while according to (22a)

[ψi(u
′, t ′)]z′=0 = f (t ′)[U(t ′)− U(t ′ − z′)]. (B.3)

Substituting (B.2) and (B.3) into (35a) gives

4iπ2φi(u, t) = −c(1 + d)
∫

Br
ds exp(sct)

×
∫ ∞

−∞
dßF(ß, s) exp(ißx) cosh(szz) exp(−szd|z|) (B.4)

with F(ß, s) given by (28b) so that

4iπφi(u, t) = −2c(1 + d)
∫ τ

0
dt ′f (t ′)

∫
Br

ds exp(sct − sct ′)

×
∫ ∞

−∞
dß δ(ß) exp(ißx) cosh(szz) exp(−szd|z|)

= − c(1 + d)
∫ t

0
dt ′f (t ′)

∫
Br

ds exp[sc(t − d|z|/c)− sct ′]
×{exp(sz) + exp(−sz)}. (B.5)

Taking into account (29a), (30) and (31), the comparison of (B.5) and (29) shows that

2φi(u, t) = −(1 + d)[ψi(u, td) + ψ(0)r (u, td)] td = t − d|z|/c (B.6)

in which ψi and ψ(0)r are the fields (22a) and (22b) respectively.
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